Unit II

- **4.** (a) Derive the Maxwell-Boltzmann velocity distribution law in three dimensions. **4**
 - (b) Compute the most probable speed and the mean kinetic energy for a gas following Maxwell-Boltzmann statistics at temperature T.
- 5. (a) Show that the Maxwell-Boltzmann distribution leads to the equipartition of energy for an ideal gas.
 - (b) For a Maxwell-Boltzmann gas, calculate the fraction of particles with speeds greater than twice the average speed at T = 300 K.

Unit III

6. (a) Derive the Fermi-Dirac energy distribution law and explain the concept of Fermi temperature.

No. of Printed Pages: 06 Roll No.

32271

B. Sc. EXAMINATION, 2025

(Fourth Semester)

(Re-appear Only)

PHYSICS

Paper-VII

Statistical Physics

Time: 3 Hours] [Maximum Marks: 40

Before answering the question-paper, candidates must ensure that they have been supplied with correct and complete question-paper. No complaint, in this regard will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory. All questions carry equal marks. Use of a scientific (non-programmable) calculator is allowed.

(Compulsory Question)

- (a) For a system of 3 distinguishable particles in two equal-sized boxes, calculate the thermodynamic probability for the macrostate with 2 particles in one box and 1 in the other.
 1.5
 - (b) Derive the condition for thermal equilibrium between two systems in terms of the β parameter.
 - (c) For an ideal gas following Maxwell-Boltzmann statistics, compute the ratio of the root mean square speed to the average speed.

 1.5
 - (d) Show that the Maxwell-Boltzmann distribution reduces to the classical limit for high temperatures.
 - (e) Calculate the Fermi energy for a Fermi-Dirac gas with a particle density of 1028 m^{-3} at T = 0 K. 1.5

2

(f) For a solid with a Debye temperature of HD = 300 K, estimate the specific heat at T = 30 K using the Debye model. 1

Unit I

- 2. (a) Derive the probability theorems for mutually exclusive and independent events.
 - (b) For N = 3 distinguishable particles distributed in two boxes, compute the number of accessible states and the thermodynamic probability for the most probable distribution.
- **3.** (a) Derive Boltzmann's relation between entropy and thermodynamic probability.

4

(b) Calculate the variance in the number of particles in one compartment for a system of N = 50 indistinguishable particles distributed in two equal-sized compartments.

(b) For a solid with a Debye temperature of HD = 400 K, calculate the specific heat at T = 20 K and compare it with the Einstein model prediction.

- (b) Calculate the zero-point pressure of an electron gas with a Fermi energy of 5 eV.
- 7. (a) Apply Bose-Einstein statistics to derivePlancks radiation law.4
 - (b) For a Fermi-Dirac gas at T = 0 K, derive the expression for the specific heat anomaly in metals.

Unit IV

- 8. (a) Derive the Einstein model for the specific heat of solids and explain its shortcomings at low temperatures.
 - (b) Compare the classical Dulong-Petit law with the quantum-based Einstein model for a solid at high temperatures.
- 9. (a) Derive the Debye model for specific heat, emphasizing the role of phonon modes.4